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Abstract. We use geometrical methods and functional derivative techniques to analyse the 
stochastic behaviour of multidegree-of-freedom nonlinear systems driven by Gaussian 
noises with arbitrary correlation functions. The method has the advantage of being also 
applicable to systems with an infinite number of degrees of freedom (partial differential 
equations) with some kind of Hamiltonian structure, and gives some insight into the nature 
of the approximations that lead to some of the main effective Fokker-Planck equations 
used in the literature. 

1. Introduction 

The study of the properties of nonlinear systems driven by stochastic forces is a topic 
of current interest. There is a large class of physical situations in which the stochastic 
nature of some of the relevant parameters involved in the problem play a prominent 
role in the evolution of the system [l-41. Of particular significance is the analysis of 
the behaviour of systems perturbed by coloured noise, i.e., with a non-zero correlation 
time. It is now well established that the consideration of the finite correlation time of 
the noise may be of importance in the description of a number of physical problems, 
e.g., statistical properties of dye lasers [ 5-71, noise-induced phase transitions in chemi- 
cally reacting systems [2,8,9], optical bistability [lo], and liquid crystals [ 111. Several 
techniques have been applied to obtain approximate Fokker-Planck equations to 
describe the behaviour of the probability density of the system [2,4,12-161. Although 
the relation among the different approximate Fokker-Planck equations is now becoming 
clear [17, 181, it would be certainly of interest to have a simple, powerful, unifying 
formalism to deal with a broad class of systems under the influence of coloured noise 
and that allows one to identify some of the approximations that lead to the different 
Fokker-Planck equations. 

Quite recently a geometrical treatment of stochastic systems driven by white noise 
has been developed [19,20]. This approach allows the use of a geometrical (i.e., 
intrinsic) language independent of the coordinates and provides general advantages 
that can contribute towards clarifying the analysis of stochastic systems, e.g., the 
derivation of the Fokker-Planck equations is simplified and the nature of some of the 
approximations appears clearer, the formalism is valid for multidimensional systems 
and also for a broad class of stochastic partial differential equations, and the invariance 
of the effective Fokker-Planck equations (EFPE) under transformations is very easy to 
recognise. 

0305-4470/90/ 122363 + 16%03.50 @ 1990 1OP Publishing Ltd 2363 
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In this paper we use functional derivative techniques [ 12,21-231 to extend those 
results to systems perturbed by coloured noise with arbitrary correlation functions. In 
section 2 we re-obtain two of the main EFPE used in the literature. We start with the 
Langevin equation to arrive at an exact evolution equation for the mean value (A , )  of 
a dynamical function, in which a stochastic field D appears. In order to obtain a 
Fokker-Planck type equation it is necessary to replace this stochastic field by a 
deterministic one. We examine the approximations that lead to the best Fokker-Planck 
equation (BFPE) [12,13] and to the Fox equation [14], that are here obtained for 
multidimensional systems perturbed by an arbitrary number of Gaussian correlated 
noises. As a by-product of the derivation we also provide a necessary and sufficient 
condition to obtain an exact Fokker-Planck equation for the system, which is the 
multidimensional extension of that found by Faetti and Grigolini [17]. It should be, 
however, emphasised that our aim in this section is to illustrate the usefulness of the 
geometrical approach and not to discuss the range of applicability of the different 
EFPE, a problem that has already been considered in the literature [4,7,24-281. Section 
3 is devoted to the discussion of two simple examples, included mainly for pedagogical 
reasons: linear systems, deriving a closed equation for the first moment of the position 
vector, and one-dimensional nonlinear systems, for which we obtain a compact form 
of the diffusion function similar to that obtained recently by van Kampen [29]. In 
section 4 we apply the formalism to classical Hamiltonian systems, giving the expression 
of the BFPE and Fox equation in terms of Poisson brackets. Newtonian systems and 
two very important partial differential equations, the nonlinear Klein-Gordon equation 
and the Korteweg-de Vries equation, are discussed as examples, obtaining some 
qualitative properties for the mean value of relevant dynamical variables. In section 
5 we apply the BFPE to quantum systems perturbed by classical noise. We treat in 
detail the relaxation of an arbitrary spin in the presence of a fluctuating magnetic field, 
previously considered by Itzykson [30] in order to explain the anomalous magnetic 
moment, and by Faid and Fox [31] in their generalisation of Kubo's theory of 
spectroscopic line shapes. Finally, in section 6 we summarise our main conclusions. 

2. Geometrical derivation of Fokker-Planck equations 

We consider the stochastic differential equation (summation over repeated indices is 
implied) 

1 = F ( x )  + fk ( 1 )  ck((x) (1) 

where x is a point of a manifold M, F and Gk are vector fields on M and & ( f )  are 
Gaussian coloured noises with zero mean value and arbitrary correlation function 

The equation (1) defines a stochastic flow + ( f 7 f ' )  : M + M. The smooth dynamical 
function A :  M +R evolves in the usual way 

A, L A o +('v0) 

A, = LF,+&(f)c:(At) ( 5 )  

(4) 

following the equation 
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where LF, is the Lie derivative [ 3 2 ]  in the direction of the field Fl =[4"o ' ]* (F) .  
Averaging (4) over the realisations of the noises tk and recalling that p ( x ,  tJy, 0) = 
(S(x - 4( ' , ' )y))  we have, 

(A,)(Y) = I dx Ax,  fly, O)A(x). (6) 
M 

We will derive the evolution equation for the mean value (A,) and we will use it 
to arrive at an equation for the probability density. In order to do this we average ( 5 )  
and apply the well known properties of the Lie derivative to get 

(A,)  = ([ LF ( A 1 ,) + ('!k ( [ L G  'A 1 I ) *  ( 7 )  

In the appendix we obtain an expression for ( & ( t ) B , ) ,  B, being an arbitrary 
dynamical variable. Using this result we finally get 

(A ,  ) = ([ LFA] r ) + (1 LD A ( ) LG (A 1 r ) (8) 

where the field Dk(  t )  contains the memory effects due to the non-zero correlation time 
of the noises and is given by 

This is an exact formal expression although not very useful since the field Dk is, 
in general, stochastic. This fact prevents the use of (6) to obtain a Fokker-Planck type 
equation for the conditional probability. The approximations that yield an equation 
of that type consist of the replacement of the exact Dk( t )  by a deterministic field. If 
we perform such an approximation, using (6) and integrating by parts, we obtain 

a 
-p(x, tlY, 0) dx = WP(X, tty, 0 )  dxl a t  (10) 

with 

L?=-LF+ LGkLDk(,). 

The best Fokker-Planck approximation [ 12, 131 ( BFPA) takes the form 

where 4; is the deterministic flow. It will be valid if the deterministic flow is close to 
the stochastic one in the integral domain. This is a qualitative argument which can 
provide validity criteria for each problem depending not only on the characteristic 
parameters of the noises but also on the vector fields F and G. As stated in the 
introduction it is not the aim of this paper to discuss the general range of applicability 
of the BFPE, a topic that has been treated in a number of recent studies [26,27,33]. 

The more familiar expression of the diffusion field Dk in terms of a correlation 
time expansion is obtained by recalling that 

[&I* = exp(sLF). (13) 
If, moreover, we now assume that the stochastic forces are of the Ornstein- 

Uhlenbeck (ou) type [ 2 ]  with correlation function 
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and neglect the transient terms, we get 

or formally 

Another widely used EFPE is the one proposed by Fox [14]. This equation is 
obtained by making a linearisation of the deterministic flow [&"I* at each point x of 
the manifold and it is also known as local linearisation [ 17,343. If we can find tensorial 
fields A k ( x )  such that 

LFGk = A k C k  (17) 

L ~ A ~  = o (18)  

[ #4* C k ( x )  = exp( sAk(x) )  C k (  x). 

then we have 

(19) 

Setting (19) in (12) we get the Fox approximation [14] of the fields D k ,  which 
reads, under the same conditions of ( 1 5 )  and (16), 

where 1 is the identity matrix. The transient terms can be neglected only if the matrices 
1 + Tkk.Ak' are positive definite and non-singular. These fields inserted in ( 1 0 )  and ( 1 1 )  
give the multidimensional version of the equation derived by Fox in [14] for one- 
dimensional systems perturbed by coloured noise. In this latter case the matrix A(x)  
is a scalar function and is univocally determined by (17) 

fg' -f 'g A(x)=-- 
g 

In the multidimensional case, the condition (17) does not determine the matrix 

We finally wish to indicate that there are certain situations in which some of these 
A k ( x )  and (18) must be used to choose in each case the best option. 

approximations become exact. If the vector fields C and F satisfy 

Lc(LF)"G=O (22) 

for all n, then the field D is deterministic and the BFPE is exact. A more restrictive 
but more easily verifiable condition is 

LFG = AG (23) 
and in this case both the BFPE and the Fox equation presented above coincide and 
are exact. Both conditions (22) and (23) are equivalent for a one-dimension system, 
and the second reads 
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which is the same as that found by Faetti and Grigolini [ 171. A broad class of systems 
satisfying (24) is given by 

x = x + axh+' + #f( t )xh+l  ( 2 5 )  

and the corresponding BFPE is (lo), (1 1) with 

D ( t ) = d ( x , t ) = g ( x )  

We would finally like to point out that for the multidimensional case it is conceivable 
to find systems that satisfy only the first condition (22). In these cases the BFPE is 
exact whereas the Fox equation might not be. 

3. Simple applications 

3.1. Linear systems 

We consider the linear equation 

x = AX + #f ( t ) BX (27) 
where x is a point of R" and A, B are n x n matrices. In this example it is possible 
to calculate the BFPA of D ( x )  which is a linear field given by the matrix D:  

D = lo' ds T(s) eSAB e-SA. (28) 

Assuming that A is a diagonalisable matrix, in the basis that diagonalises A the 
matrix D is, in the o u  case, 

u2 B, D.. = - 
" 2 l + T ( a j - a i )  

where we have assumed that 1/ T > Re(ui - u j )  to avoid divergences. We can now apply 
(8) to obtain a closed equation for the mean value ( x , )  

d - ( x , )  = [ A  + D B ] ( x , ) .  
d t  

3.2. One-dimensional systems 

As another example we concentrate our attention on single variable dynamical systems. 
The equation of motion now is 

x = f ( x )  + # f ( t ) g ( x ) .  (31) 
Applying (12) it is easy to get an expression for the diffusion term of the BFPE 

which coincides with the usual one in the ou case. The flow defined by (31) is 
(b;x = $-I[ 9 ( x )  + t ]  (32) 

9 being a primitive of l / f ( x ) .  Using this, we get 
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A similar expression has been recently derived by van Kampen [29], for the additive 
noise case, i.e., g ( x )  =constant, using a cumulant expansion. If we now make the 
change of variable y = C#JO'x, we obtain, after neglecting transient terms, 

where xSt= liml--= C#Jhx is a stationary point of the flow 4;. The change is valid for 
all y that is not a stationary point, i.e. f (y)  f 0. At these points the function D ( x )  is 
given by 

D ( x )  = g ( x )  Ioz ds T(s) e'''''). (35) 

Note that the argument of the correlation function r in (34) is the time which the 
deterministic system takes to go from x toy  and it is always positive. It is straightforward 
to check that (34), in the ou case, is the formal solution of the differential equation 
obtained in [12] for the function D ( x ) .  

4. Hamiltonian systems 

The general geometric form of the evolution equation derived in section 2 has a simple 
application in simplectic geometry [35]. We consider a system with the stochastic 
Hamiltonian 

H ( x ) = H O ( x ) + 6 k ( t )  vk(x). (36) 
The symplectic structure associates a vector field XH with every smooth dynamical 

function H. The Lie derivative in the direction of such a field acting on functions and 
Hamiltonian vector fields is given by the Poisson bracket 

LH( V )  = { v, HJ 

J L , ( X " )  = X{",H). 

Introducing (37) and (38) in (8), we arrive at 

In the o u  case this magnitude can be expressed as a T expansion 

(42) 

(43) 
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The probability measure p(x, t )  dx, where dx is the Liouville measure associated 
with the symplectic structure, verifies (10). The Lie derivative acting on a volume form 
p(x)  dx  is 

L , ( p ( x ) d x ) = ( { p ,  H}+P divXH) dx 

= {P, HI dx (44) 

where we have applied the Liouville theorem to the Hamiltonian vector field X,. 
Therefore, we can write the BFPE in the form 

(45) 

A detailed analysis of this equation, in the white noise case, is performed in [20], 
where geometrical properties and optimisation problems are studied. In the following 
subsections we particularise (39) to different Hamiltonian systems. 

The Fox approximation (20) can also be written in terms of Poisson brackets. It 
yields the same equations (39) and (45) with a different expression for wk. Let A, (x )  
be a dynamical function such that 

{vk, HO)=AkVk. (46) 

a 
-p(x, t )  = - { p ,  H , } + { { P ,  Wk}, Vk}. 
a t  

If we now neglect { A k ,  H,} then we have 

4.1. Newtonian systems 

We first consider finite dimensional systems with Hamiltonian of the form 

The Langevin equation for the coordinates is 

q = -grad V, - 5( t )  grad V. (51) 

In order to show the differences between the white and coloured perturbations, we 
calculate the BFPA of W up to second order in the correlation time for the ow case 

7 
U- 

W = - 2 { V - r(grad V )  - p + r 2 [ p  [Hess( V ) p ]  - (grad V) (grad V,)]}. ( 5 2 )  

The mean values of q and p evolve following the equation 

(4) = -(grad Ved - ( T 2 ( 4 ) P )  (53) 
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with 

T u 2  
V,, = Vo - - }grad VI2 

4 (54) 

and 

r = H ~ S (  v). ( 5 5 )  

Note that if V is a quadratic function the second term in (53) is a dissipative 
contribution entirely due to the colour of the noise and appears in the second order 
of T. For the harmonic oscillator, W can be obtained explicitly in all orders of T and 
(53) becomes a closed equation [13], since this a particular case of the linear systems 
discussed in section 3.1. 

Applying (39) to the deterministic energy Ho and angular momentum L, = q,pj - q,pi 
it is possible to find some remarkable properties of the evolution of such quantities 
when the perturbation is a white noise: 

(56) (h0) = iv2( lgrad VI’) 

( i o )  = ({Lg, Ho}). (57) 

We can, therefore, conclude that the mean value of the deterministic energy increases 
with time, whereas if the angular momentum is conserved in the deterministic evolution, 
its mean value will also be conserved in the perturbed system, even when the perturba- 
tion breaks down the rotational symmetry of the Hamiltonian Ho. Unfortunately it is 
not possible to obtain similar results for the coloured noise since the complexity of 
the expressions does not allow us to carry out such qualitative analysis. 

4.2. The nonlinear Klein-Gordon equation 

The nonlinear Klein-Gordon equation 

U,, - U, + V&( U )  = 0 (58) 
possesses a Hamiltonian structure [ 361. Here the subscripts indicate partial derivatives 
with respect to the correspondent variable. The phase space is that of smooth functions 
u(x),  x ( x )  on R and a Poisson bracket is defined on the functionals A[u,  x ]  by 

The Hamiltonian 

H -’ dx(x2+uf;+2Vo) 
0 - 2  1. 

with the Poisson bracket defined above, yields the evolution equations 

U, = I T  (61) 
x,  = U,, - V&( U )  

which coincide with (58). 
We now consider the stochastic equation [37,38] 

U,, - U,, + V&( U )  + 5( t )  V’( U )  = 0 (63) 
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which is derived from the stochastic Hamiltonian 

Recalling that, if 

dxA(u(x) ,  u,(x), uxx(x), . . . I  

the functional derivative is 

6A aA 
6~ au dux, x.x 

- 

it is easy to calculate the BFPA of the functional W up to second order on T for the 
o u  case 

with 

and 

.(U) = T U V ( U ) .  (70) 
If the potential V is quadratic on U, the last term of (68), due to the non-zero 

The Klein-Gordon momentum functional 
correlation time of the perturbation, is dissipative as in the Newtonian case. 

P =  dxnu, i. 
is a conserved quantity in the deterministic evolution. Although we do not have the 
explicit form of W, it is possible to calculate the evolution equation for a quantity ( B )  
in all orders of T if B and {B,  V} are constants of the deterministic motion 

(4 W )  = lo= ds T ( S ) { B ¶  [40'1* v> 

U 2  
=,{B, V}. 

L 

This is the case for (P) since 

A[u]E{P, V}=- dxu,V'(u) 1. 
= V ( u ( - c o ) ) -  V(u(+co)) (73) 
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and the functional derivative of A [ u ]  is identically zero. Note that if the solution u(x)  
does not vanish at infinity the functional A [ u ]  can be non-zero as it happens in the 
kink and antikink solutions of the sine-Gordon equation [37,38]. We can now also 
apply (72) to (P’ )  since 

{ P 2 ,  V } = 2 P { P ,  V } = 2 P A  (74) 

is a constant of the deterministic motion. We have 

-- d(P2) - u2((A[  U ] ) ’ )  
dt  

which extends to coloured perturbation the result obtained for the white noise case in 
[371. 

The mean value of the deterministic energy verifies 

I, U =  
(fro) =- dx([ V’( u ) ] ~ ) -  dX(~*(U)(u:+ U:)) 

2 I, 
+ ~ ~ ~ d x ( V ’ ( u ) [ ( u i - u : ) V ( u ) -  V,”]- V‘V;) .  (77)  

From this expression we see that for white noise perturbations ( T = 0) the mean 
value of the energy has the same behaviour as for Newtonian systems, i.e., it increases 
with ti me. 

4.3. The Korteweg-de Vries equation 

The Kdv equation [39] 

U, + u.wx - 6uu.x = 0 (78)  

can be discussed in a similar way. The phase space is now the set of functions u(x)  
and one of the possible Hamiltonian structures is given by the Poisson bracket 

with the Hamiltonian functional 

Ho( U )  = dx(  u3 +$U:). 

As in the preceding subsection we now introduce a stochastic perturbation, coupled 
to the potential V (  U), through the fluctuating Hamiltonian H = Ho+ t( t )  j, d x  V (  u(x)).  

The stochastic evolution equation is 

u,+u,,,-~uu,-~(~)V(U)U,~=O. (81) 

For simplicity we limit the discussion to the white noise case. The equation for 
the mean value of the field reads 

(U), +(U),,, -6(uux) = 0. (82) 
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To find the behaviour of the mean value of the main relevant functionals of the 
problem, i.e. the mass 

M =  d x u ( x )  J, 
the momentum 

P = dx u2(x) 

and the energy (80), we use the general expression (8). All these functionals are 
constants of the deterministic motion, and it is not difficult to see that the mean value 
of the mass and momentum is constant in the stochastic evolution equation, and that 
this also occurs for coloured noise. On the other hand, the mean value of the 
deterministic energy increases with time verifying 

This mean value is constant if V"( U )  = 0. In this case the equation can be exactly 
solved using the inverse spectral transformation [ 3 8 ]  and has soliton solutions. 

5. Quantum systems perturbed by classical noise 

The linear symplectic structure of quantum mechanics [36]  allows us to apply the 
expression (39) to Schrodinger equations with classical stochastic perturbations. We 
consider the quantum stochastic Hamiltonian 

= HO+ 6 k  ( t )  vk ( 8 6 )  

where & (  t )  are real classical stochastic processes as considered in the previous sections 
and H,, vk are self-adjoint operators on the Hilbert space of the system. Using ( 3 9 )  
and the Poisson bracket of the symplectic structure it is possible to obtain, for any 
observable At in the Heisenberg picture, the evolution equation 

(At)=-i([A, H O 1 t ) - ( [ [ A ,  v k l l  W k ( f ) l t )  (87) 
where, in the BFPA, 

In the basis of eigenvectors I& )  of Ho,  wk can be written as 
t-r 

where wu = E ;  - ej ,  E ,  being the eigenvalue of Ho corresponding to the eigenvector I+,). 
If the noises are of the o u  type and the transient terms are neglected we have 
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Another expression for W, is given in terms of a r expansion: 

with 

adH(V)=[H, v]. (92) 

Tr[ PA] = Tr[ PO(A,)I (93) 

If the initial state of the system is po,  the density matrix p, defined by 

follows the evolution equation 

This equation reduces in the white noise case to the one derived in [40] and 
generates a quantum semigroup [41]. 

We will now discuss as an example of the BFPE the depolarisation of a spin L in 
the presence of a magnetic field B = Bk with coloured fluctuations, which has been 
discussed as a model to explain the radiative correction to the magnetic moment [30] 
and, very recently, in the problem of spectral line-shape broadening [31]. To simplify 
our analysis we restrict consideration to the case of isotropic fluctuations, although 
the extension to the non-isotropic situation is straightforward. 

The Hilbert space % of such system is a (21+ 1)-dimensional complex space and 
its Hamiltonian is 

= BL3+ 61(t)L, + ' $ 2 ( t )  L 2 +  6 3 ( l l L 3  (95) 
where (k are independent ou random processes with the same dispersion U and 
correlation time r. 

The deterministic evolution given by the unitary operator e-isHo is a rotation around 
the z axis with angle Bs. Trivially W, = ( u2/2) L3, We also have 

W, =a' [ox ds e-'"[LI cos(-&)- L2 sin(-Bs)] 
27 

u2 L,+rBL2 
2 l + ( r B ) ' '  

-_  - 

A similar calculation gives 

Using the 

with 

u2 L2- TBL, 
W,=- 

2 l + ( r B ) * '  (97) 

Jacobi identity it is possible to write the equation for p in the form 

Although in this example we have considered coloured noises the equation (98) is 
the generator of a quantum semigroup. Recalling that adL, is a reducible self-adjoint 
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representation of the Lie algebra su(2) on the Hilbert space of the Hilbert-Schmidt 
operators on X, we can solve (98) using the angular momentum technique. The 
operators ad,, and Z;=] (adL,)’, defined on the representation space, commute and are 
self-adjoints. Therefore, they have a common basis of eigenvectors I k m )  which verifies 

3 

adL,(lk m ) )  = mlk m )  (adL,I2(lk m ) )  = k(k+  1)lk m )  (100) 
j = 1  

with m = -k, . . . , k and k = 0 , 1 , .  . . ,21. There also exist two ladder operators adL3 = 
ad,, f iad,, which act on that basis in the form 

(101) 

Every eigenvector Ik m )  can be obtained from these operators using (101) and the 

ad,*(lk m ) )  = J k ( k +  1)  - m ( m  * 1 )  Ik m * 1). 

fact that Lk CC I k f k). Therefore, if we write p (  t )  in this basis 

p ( t )  a k m ( t ) l k m )  (102) 
and we introduce it in (98), we obtain for the coefficients akm(t )  

U’ ( k ( k +  1)+B2T2m2)) (Ykm(t). 
& k m (  t )  = -iBm - ( A 2 ( 1 + B , ~ ~ )  

We note that all the coefficients vanish exponentially except for 1 = 10 0). The 
maximum of the relaxation times is 

1 + B ~ T ~  
Trel = - 

and the maximum entropy state 1/(21+ 1)l is reached for every initial condition, in 
an exponential way with relaxation time given by the last expression. 

The mean value of the components of the angular momentum are easily obtained 
using (87) or by calculating the trace of p ( t ) L i  using (102) and (103) and taking into 
account that the basis Ikm) is orthonormal in the scalar product (AIB)=Tr(A+B). 
Either way we get the polarisation vector 

P3( t )=exp -- [ T : J  

which coincides with the result obtained in [31] using the more complicated cumulant 
method. 

Therefore, a depolarisation occurs, and the spin precesses with frequency fi which 
is greater than the deterministic one. This increasing in the precession velocity is 
entirely due to the non-zero correlation time. 

We would like to point out that it is a simple matter to extend the above discussion 
to arbitrary correlation function r( s) .  Equation (103) now reads 
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and the precession frequency is now 

l3 = B + T , ( B )  

rc(u) = Iox ds  r(s) cos u s  

r,(w) = JOE ds  r(s) sin us. 

where Tc and r, are the Fourier cosine and sine transform, respectively 

The cosine transform is proportional to the spectral density of the processes & ( t )  
[ 11. Therefore r,(O) 5 T c ( B )  3 0 and we always have depolarisation with a maximum 
relaxation time given by 

On the other hand, since 

and rC(O) is the intensity of the noise, the use of the equations in the stationary regime 
is justified for sufficiently weak noises and short correlation time. 

We finally mention that the results in [30] are altogether recovered if we retain 
only the linear term of I-,( B )  in (109). 

6. Conclusions 

In this paper we have shown how the geometrical language can be useful to analyse 
the behaviour of nonlinear systems perturbed by coloured noise. Within this framework 
we are able to distinguish different assumptions that lead to various effective Fokker- 
Planck equations. The geometrical approach is particularly adequate to study Hamil- 
tonian systems in both the classical and quantum cases, and seems very promising for 
stochastic partial differential equations. In particular we obtain relevant information 
for the evolution of some dynamical variables for the nonlinear Klein-Gordon equation 
(which includes the well known sine-Gordon and 44), the Korteweg-de Vries equation, 
and the behaviour of a spin in a fluctuating magnetic field, generalising previous results. 
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Appendix 

In this appendix we calculate the mean value (&(?)&) for an arbitrary dynamical 
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variable B. In order to do this we use Novikov's theorem [21] 

which is valid for every functional % [ e ]  of the stochastic processes & ( f ) .  
Introducing B, in the last expression 

We integrate the evolution equation ( 5 )  to evaluate the functional derivative 

Bf = B O + { o f  d s { [ L F ( B ) l s + ' $ k ( s ) [ L G A ( B ) l s } .  (116) 

Taking the functional derivative 

where we have taken into account that the dynamical variables evaluated at s depend 
on '$k (t') only for s 3 t'. 

There exists a field D k ( t ,  t') such that 

From ( 1  17) it is easy to see that Dk(  t', t') = C:, . Introducing this field in ( 1  17) and 
deriving with respect to t 

d 
d t  
- 

r , t ' J ( B f )  = L D k i r , r ' ) [ L F , (  B f )  + 6 k ' (  f ) L G : ' I (  Bf ( 1  19) 

But 

hence, using ( 5 ) ,  we get 

d 
d t  
- I l k ( ? ,  r ' ) = O  

and finally 
o k ( t ,  t ' )  = G:.. 

The mean value can be written 

where 
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